

Dispositivos de monitoreo de aislamiento de sistemas de TI médicos

(Juego de 4 piezas)

Manual de instalación y operación V2.7

Acrel Co., Ltd.

Declaración

Lea atentamente estas instrucciones antes de utilizar este producto. Todas las imágenes, logotipos y símbolos involucrados son propiedad de Acrel Co., Ltd. Todo o parte del contenido no podrá reproducirse públicamente sin autorización escrita por parte de personal ajeno a la empresa.

Lea atentamente las instrucciones y precauciones de este manual de funcionamiento antes de utilizar esta serie de productos. Acrel no será responsable de lesiones personales o pérdidas económicas causadas por ignorar las instrucciones de este manual de operación.

El equipo es un equipo eléctrico profesional; cualquier operación relacionada debe ser realizada por técnicos eléctricos especiales. Acrel no es responsable de lesiones personales o pérdidas financieras resultantes de errores de personal no profesional.

El contenido de esta descripción se actualizará y modificará constantemente, y es inevitable que haya una ligera discrepancia entre el producto físico y la descripción en la actualización de la función del producto. Consulte el producto físico adquirido y obtenga la última versión de la descripción a través de www. acrel.cn o canales de venta.

Modificado Registros

No.	Tiempo	Versiones	Razones para la revisión
			Sobre la base de los productos de control de aislamiento
01	2016 01 20	V2.0	originales, el contenido de las cinco piezas de productos se
01	2010.01.20	V 2.0	integra para reemplazar las instrucciones de cada
			subproducto.
02	2016.10.25	V2.1	Se han solucionado algunos errores.
			La descripción general agregó "los productos cumplen con
03	2016.11.07	V2.2	los estándares empresariales Q31/0114000129C013-2016
			Instrumento de monitoreo de aislamiento del sistema de TI
			Eliminar algunos accesorios descatalogados;
04	2020.04.29	V2.3	Agregue la dimensión de instalación de la puerta del
			gabinete AID10
05	2020.06.11	V2.4	Agregue el diagrama de instalación de la puerta del
			gabinete AID150
06	2020.08.14	V2.5	Corregir errores y omisiones, ajustar la redacción.
07	2021.01.20	V2.6	actualizar versión _
			Revisar errores y omisiones, actualizar imágenes de
0 8	2 022.02.18	V2.7	productos, actualizar casos típicos, actualizar catálogo,
			actualizar contenido de transformadores de corriente.
Nota :			

Contenido

1 Introducción	1
2 Características funcionales	2
2.1 Características funcionales del transformador de aislamiento médico serie AITR	2
2.2 Monitor de aislamiento médico inteligente AIM-M10	2
2.3 Características funcionales del AID10/150	2
2.4 Características funcionales del transformador de corriente AKH-0.66P26	3
3 Estándar de referencia	3
4 Parámetros técnicos	3
4.1 Parámetros técnicos del transformador de aislamiento médico serie AITR	3
4.2 Parámetros técnicos del monitor de aislamiento médico AIM-M10	4
4.3 Parámetros técnicos de AID10/AID150	5
4.4 Parámetros técnicos del transformador de corriente AKH-0.66P26	6
5 Instalación y cableado	6
5.1 Forma y tamaño del orificio de montaje	6
5.2 Método de instalación	8
5.3 Método de cableado	11
5.4 Diagrama de cableado típico	13
5.5 Consideraciones	14
6 Programación y aplicación	15
6.1 Descripción de los paneles	15
6.2 Instrucciones del indicador LED	16
6.3 Descripciones de las funciones de los botones	17
6.4 Descripciones de funcionamiento de los botones	18
7 Protocolo de comunicación	22
7.1 Protocolo de comunicación Modbus-RTU	22
7.2 Introducción al código de función	22
7.3 Tabla de direcciones de parámetros del AIM-M10	23
8 Aplicaciones típicas	25
9 Instrucciones de encendido y depuración	26

9.1 Verificación del cableado	26
9.2 Fallos comunes y eliminaciones	26
9.3 Configuración y depuración	27

Dispositivos de monitoreo de aislamiento de sistemas de TI médicos

1. Introducción

Los sistemas de TI médicos se utilizan principalmente en ubicaciones médicas críticas 2, como quirófanos y unidades de cuidados intensivos ICU/CCU, para proporcionar una distribución segura, confiable y continua de equipos críticos en estas ubicaciones. Acrel desarrolla productos de monitoreo de aislamiento médico de acuerdo con los requisitos especiales de resistencia de aislamiento del sistema de distribución en lugares médicos de tipo 2 con muchos años de experiencia en diseño en la industria de medidores de potencia. Se puede utilizar para aislar sistemas de energía en varios quirófanos y unidades de cuidados intensivos en lugares médicos, realizando monitoreo en tiempo real del aislamiento del sistema, carga, temperatura del transformador de aislamiento y otras condiciones operativas, así como monitoreo remoto. Los productos cumplen con las disposiciones del estándar empresarial Q31/0114000129C013-2016 *IT System Insulation Monitor* .

Los productos de monitoreo de aislamiento del sistema de TI médico (juego de 4 piezas) incluyen el transformador de aislamiento médico de la serie AITR, el monitor de aislamiento médico inteligente AIM-M10, el transformador de corriente AKH-0.66P26 y el instrumento de visualización y alarma externo de la serie AID (AID10, AID150), etc. , como se muestra en la Tabla 1.

Tipo	Imagen	Descripción	
		El transformador de aislamiento de la serie AITR se utiliza	
		especialmente en sistemas de TI médicos. Los devanados	
		están tratados con doble aislamiento y tienen una capa de	
		blindaje electrostático, lo que reduce la interferencia	
Transformador de		electromagnética entre los devanados. El sensor de	
aislamiento médico		temperatura PT100 está instalado en la bolsa de cables para	
serie AITR		monitorear la temperatura del transformador. Toda la	
		carrocería está tratada con pintura de invasión al vacío, lo	
		que aumenta la resistencia mecánica y la resistencia a la	
		corrosión. El producto tiene un buen rendimiento de aumento	
		de temperatura y muy poco ruido.	
		El monitor de aislamiento médico inteligente AIM-M10 es	
Monitor de aislamiento		de tamaño compacto, fácil de instalar, inteligente, digital y	
inteligente médico		conectado en red, y es una opción ideal para el monitoreo del	
AIM-M10		aislamiento de sistemas de suministro de energía de	
	1234571	aislamiento en quirófanos, unidades de cuidados intensivos y	
		otros lugares médicos.	
	2400 2000 06 P20 1300 1880 982 88286	El transformador de corriente tipo AKH-0.66P26 es el	
Transformador da		transformador de corriente de protección. compatible con el	
appriante AKH 0.66P26		monitor de aislamiento AIM-M10, cuya corriente máxima	
		medible es 60 A y la relación de transformación es 2000:1.	
		El transformador de corriente se fija directamente dentro del	

Tabla 1 Productos de monitoreo de aislamiento de sistemas de TI médicos

			gabinete mediante tornillos, y el lado secundario sale por el terminal, lo cual es conveniente de instalar y usar.
Instrumento de	AID10	24000 ● 第57 ● 単線 ● 単線	Es adecuado para instalación en pared integrado en quirófano o estación de enfermería y puede monitorear 1 monitor de aislamiento AIM-M10. Tiene función de alarma sonora y luminosa de aislamiento, sobrecarga, sobretemperatura y fallo del equipo, y comunicación RS485.
n y alarma externo serie AID	AID150		Pantalla LCD, bus RS485, monitoreo centralizado de hasta 16 CONJUNTOS de datos del monitor de aislamiento médico inteligente AIM-M10, alarma de sonido y luz que pueden ser remotas. El AID150 también puede monitorear datos de múltiples monitores de corriente residual AIM-R100.

2 características funcionales

2.1 Características funcionales del transformador de aislamiento médico de la serie AITR

La relación de transformación entre los devanados primario y secundario es 1:1;

Se adopta un tratamiento de doble aislamiento entre los devanados y se diseña la capa de protección electrostática;

El sensor de temperatura Pt100 está instalado en cada paquete de cables para monitorear la temperatura del transformador de aislamiento;

Se utiliza para la transformación del sistema TN en un sistema IT (sistema sin conexión a tierra) después del transformador de aislamiento.

2.2 Monitor de aislamiento médico inteligente AIM-M10

Monitoreo en tiempo real del sistema de TI para la resistencia del aislamiento de tierra, la corriente de carga del transformador, la temperatura del devanado del transformador y dar indicación de alarma cuando ocurre una falla;

El sistema de monitoreo en tiempo real de falla de rotura de cable, falla de rotura de cable del sensor de temperatura y falla de rotura de cable de tierra de la función, y da una indicación de alarma cuando ocurre la falla;

Salida de relé, indicador LED y otras indicaciones de fallo;

Modbus, que se comunica con un instrumento de visualización y alarma externo, puede monitorear el funcionamiento del sistema de TI de forma remota;

El registro de eventos, incluida la hora y el tipo de alarma, es conveniente para que el operador analice el estado de funcionamiento del sistema y elimine la falla a tiempo;

La función de salida de energía DC24V puede proporcionar energía para alarmas externas e instrumentos de visualización.

2.3 Características funcionales del AID10/150

> El valor de alarma de resistencia de aislamiento, el valor de alarma de corriente de carga y el valor

de alarma de temperatura del transformador del sistema se pueden configurar de forma remota;

Cuando el sistema presenta falla de aislamiento, sobrecarga, temperatura del transformador por encima del límite y falla de cableado, la alarma y el instrumento de visualización emiten la alarma sonora y luminosa correspondiente y tienen la función de eliminar la alarma sonora;

Utilizando tecnología de bus de campo avanzada, la función de monitoreo remoto se puede realizar mediante la interacción de datos en tiempo real con el monitor de aislamiento.

Modelo	Descripción de la selección
41010	Puede monitorear un conjunto de monitores de aislamiento AIM-M10 y usarse para
AIDIO	instalación empotrada en la pared.
	Puede monitorear 16 juegos de instrumentos de monitoreo de aislamiento AIM-M10 al
A ID 150	máximo y un monitor de corriente residual AIM-R100 que se puede usar para instalación
AID150	empotrando en la pared. Es apto para la monitorización centralizada en quirófano, UCI u
	otros sitios.

2.4 Características funcionales del transformador de corriente AKH-0.66P26

La corriente máxima medible es 60 A y la relación de cambio de transformación es 2000:1;

Trabaje con el instrumento de monitoreo de aislamiento AIM-M10 para medir la corriente de carga del transformador de aislamiento.

3 Estándar de referencia

◆ IEC 60364-7-710 Instalaciones eléctricas de edificios sección 7-710: Requisitos para instalaciones o ubicaciones especiales ---- ubicaciones médicas ;

IEC 61557-8 Seguridad eléctrica del sistema de distribución de bajo voltaje por debajo de 1000 V
 CA y 1500 V CC, Equipos de prueba, medición o monitoreo para prueba de protección, sección 8:
 Dispositivo de monitoreo de aislamiento para sistemas de TI ;

IEC 61557-9 Seguridad eléctrica del sistema de distribución de bajo voltaje por debajo de 1000 V
 CA y 1500 V CC, Equipos de prueba, medición o monitoreo para prueba de protección, sección 9:
 equipos de posicionamiento de fallas de aislamiento para sistemas de TI;

• IEC61558-1 Seguridad de transformadores de potencia, fuentes de alimentación, reactores y productos similares sección 1 : Requisitos generales y ensayos ;

• IEC61558-2-15 Seguridad de transformadores de potencia, fuentes de alimentación y productos similares sección 16: Requisitos especiales para transformadores de aislamiento para suministro de energía en lugares médicos.

4 parámetros técnicos

4.1 Parámetros técnicos del transformador de aislamiento médico serie AITR

Consulte la Tabla 3.

Tabla 3 Parámetros técnicos de la serie AITR de transformadores de aislamiento médico

Тіро	AITR10000	AITR8000	AITR6300	AITR5000	AITR3150
------	-----------	----------	----------	----------	----------

Clase de aislamiento	h	h	h	h	h
clase de protección	IP00	IP00	IP00	IP00	IP00
Potencia/voltaje/c					
orriente					
Potencia nominal	10000VA	8000VA	6300VA	5000VA	3150VA
Frecuencia nominal	50/60Hz	50/60Hz	50/60Hz	50/60Hz	50/60Hz
Tensión de entrada nominal	CA 230 V.	CA 230 V.	CA 230 V.	CA 230 V.	CA 230 V.
Corriente de entrada nominal	45.3A	36A	28.5A	22,5	14.2A
Tensión de salida nominal	CA 230 V/115 V.	CA 230 V/115 V.	CA 230 V/115 V.	CA 230 V/115 V.	CA 230 V/115 V.
Corriente de salida nominal	43.5A	34.7A	27.4A	21.7	13.7A
corriente de irrupción	<12 pulgadas	<12 pulgadas	<12 pulgadas	<12 pulgadas	<12 pulgadas
Corriente de fuga	<200µA	<200µA	<200µA	<200µA	<200µA
Corriente de entrada sin carga	1.359A	1.08A	0.855A	0.675A	0.426A
Tensión de salida sin carga	235V±3%	235V±3%	235V±3%	235V±3%	235V±3%
voltaje de cortocircuito	<6,9 V	<6,9 V	<6,9 V	<6,9 V	<7,5 V
Parametros					
generales	20.4	(2)	50 4	25 4	25 4
Fusible Resistencia del	80A	63A	50A	33A	25A
devanado primario Resistencia del	$<55m\Omega$	<64mΩ	$<\!\!80\mathrm{m}\Omega$	<131 mΩ	<245mΩ
devanado	<45mΩ	<64mΩ	<80mΩ	$<116 \text{ m}\Omega$	<228mΩ
Pérdida de hierro	<150W	<105W	<107W	<77W	<55W
Pérdida de cobre	<230W	<200W	<170W	<125W	<120W
Eficiencia	>96%	>96%	>96%	>96%	>95%
Temperatura ambiente máxima	<40 °C	<40 °C	<40 °C	<40 °C	<40 °C
Aumento de temperatura sin carga	<36°C	<33 °C	<31 °C	<26°C	<22°C
Aumento de temperatura a	<65°C	<76°C	<67°C	<62°C	<55°C
piena carga Grado de ruido	<40dB	<40dB	<40dB	<40dB	<40dB

4.2 Parámetros técnicos del monitor de aislamiento médico AIM-M10

Consulte la Tabla 4.

Tabla 4 Parámetros técnicos del instrumento de monitoreo de aislamiento AIM-M10

Fuente de	Voltaje	CA 220 V. (±10%)	Medición de	termistor	Pt 100 _
n auxiliar	Frecuencia	50/60Hz	temperatura	Rango de medición	-50 ~ +200°C

	El consumo de energía	<5W		Rango de valores de alarma	$0 \sim \pm 200^{\circ}C$
Vigilancia del aislamiento	Rango de medición de la resistencia de aislamiento	10 ~ 999kΩ	Salida de	Modo de salida	1 salida de relé
	Error porcentual absoluto	$0 \sim \pm 10\%$	alaillia	Capacidad de contacto	CA 250 V/3 A. CC 30 V/3 A.
	Valor de alarma	$50 \sim 999 \mathrm{k}\Omega$		Temperatura de funcionamiento	$-10 \sim +55^{\circ}C$
	Tiempo de respuesta	<2s	Ambiente	Temperatura de almacenamiento	$-20 \sim +70^{\circ}C$
	Medición de voltaje	<12V	Amorene	Humedad relativa	5 ~ 95%, sin condensación
	Medición de corriente	$<$ 42 μ A		Altitud	≤2500m
Corriente	Rango de medición	2,1 ~ 50A	Comunicación		RS485, Modbus RTU
de carga	Valor de alarma	5 ~ 50A	Tensión nominal de impulso/grado de contaminación		4KV/III
	Precisión de medición	≤±5%	CE	M/EMR	Cumple con IEC 61326-2-4

4.3 Parámetros técnicos de AID10/AID150

Consulte la Tabla 5.

	Tabla 5	o Parámetros	técnicos	del	AID10/150
--	---------	--------------	----------	-----	-----------

Tipo de parámetro		AID10	AID150
Fuente de alimentación	Voltaje	CC 24 V	
auxiliar	Consumo	< 0,	6W
Rango de alarma de aislamiento			14A, 18A, 22A, 28A,
			35A, 45A
Rango de configuración de alarma de temperatura			0~+200°C
Número de sistemas monitoreados		1	dieciséis
Método de alarma		Alarma de luz sonora	
Tipo de alarma		Fallo de aislamiento, sobrecarga, sobrecalentamiento,	
		fallo del equipo.	
Modo de comunicación		RS485 , Modbus RTU	
Modo de visualización		Pantalla LED	Pantalla LCD de 128×64

4.4 Parámetros técnicos del transformador de corriente AKH-0.66P26

Consulte la Tabla 6.

Corriente de entrada	0,5 mA ~ 50 A	Rango de frecuencia	0,02 ~ 10 kHz	
Corriente de salida	0,025 ~ 25 mA	Resistencia de carga	<200Ω	
Coeficiente de	100 ppm/°C	Corriente transitoria	200A	
temperatura	11	(1s)		
Desplazamiento de	10/	Instalación	Fijado con tornillos 4×10	
fase	10	Instalación		
Temperatura de	35- +70°C	Cableado secundario	Cable de par trenzado blindado 2 *0,3 mm ² , 2 m	
funcionamiento	-55~+70 C			
Temperatura de	40. +75 °C			
almacenamiento	-40~+75 C			
Rango de resistencia	05 1200	Presión de	5000 VC A	
secundaria	93~12052	aislamiento	5000 VCA	
Exactitud	0,5%	Linealidad	0,5%	

Tabla 6 Parámetros técnicos del transformador de corriente AKH-0.66P26

5 Instalación y cableado

5.1 Forma y tamaño del orificio de montaje

5.1.1 Dimensiones externas del transformador de aislamiento médico serie AITR (unidad: mm)

La forma y el tamaño del transformador de aislamiento médico de la serie AITR se muestran a continuación y en la Tabla 7.

Vista frontal Vista lateral Vista vertical

Tabla 7 Dimensiones externas del transformador de aislamiento médico serie AITR

Tipo	Capacidad	Un(mm)	B(mm)	C(mm)	Diámet	mi(mm	F(mm)	Peso total
AITR10000	10000	280	240	427	240	190	11*8	92
AITR8000	8000	280	240	427	240	190	11*8	90
AITR6300	6300	280	225	427	240	175	11*8	75
AITR5000	5000	280	225	427	240	175	11*8	73
AITR3150	3150	280	215	427	240	175	11*8	53

Nota: según la norma, la capacidad máxima del transformador de aislamiento médico monofásico es de 10 kVA; Las dimensiones A, B y C son el largo, ancho y alto del transformador; las dimensiones D, E y F son las dimensiones de instalación del transformador; F es la posición del orificio de montaje. Se recomiendan

tornillos M8*30 para fijar el transformador.

5.1.2 Dimensiones externas del monitor de aislamiento médico AIM-M10 (unidad: mm)

Vista frontal Vista lateral

5.1.3 Dimensiones exteriores de la serie AID (unidad: mm)

Vista frontal del AID10 Vista lateral del AID10 Tamaño del orificio del

AID10

AID150 Vista frontal AID150 Vista lateral AID150 Tamaño del orificio

5.1.5 Dimensiones externas del transformador de corriente AKH-0.66P26 (unidad: mm)

Vista frontal Vista lateral Vista inferior

5.2 Método de instalación

Además del instrumento de visualización y alarma externo de la serie AID, los productos de monitoreo de aislamiento de cinco piezas del sistema médico de TI deben instalarse centralmente en el gabinete de distribución (gabinete de energía aislado). El transformador de aislamiento debe instalarse en la parte inferior del gabinete de distribución, fijarse con pernos de soporte y debe instalarse un ventilador de refrigeración. El instrumento y el disyuntor están montados en el panel superior. Si el transformador de aislamiento se instala por separado, no debe estar demasiado lejos del monitor de aislamiento AIM-M10. Cuando el instrumento de visualización y alarma externo AID10/150 se utiliza en el quirófano, se puede empotrar en la pared e instalar junto al panel de información en el quirófano para comodidad del personal médico manual. Cuando se utiliza el AID150 en ICU/CCU y otras unidades de cuidados intensivos, se debe instalar en la estación de enfermería manual para que las enfermeras de turno lo revisen, y la comunicación RS485 entre cada instrumento de monitoreo de aislamiento, la alarma centralizada del AID y el instrumento de visualización bajo monitoreo centralizado. deben estar conectados de la mano. El cableado externo del dispositivo de visualización externo de la serie AID incluye dos líneas de alimentación de 24 V y una línea de comunicación RS485 con par trenzado blindado de 2 núcleos. Estas tres líneas se extraen del gabinete de energía aislado y las tuberías deben reservarse durante la construcción.

5.2.1 Modo de instalación del monitor de aislamiento médico AIM-M10

El monitor de aislamiento AIM-M10 adopta el método de instalación del riel guía y el modo de fijación es el tipo de hebilla de clip, como se muestra en la siguiente figura:

5.2.2 Modo de instalación del instrumento de visualización y alarma de la serie AID

(1) Si AID10 está empotrado en la pared, se reservará el orificio de montaje estándar 86*86. El

diagrama de instalación es el siguiente:

Al decorar, primero colóquelo en las aberturas de la pared correctas y luego aísle el cable del gabinete de alimentación.

(2 cables de alimentación con ^{2 cables} de 1,5 mm y 1 cable de par trenzado blindado con ^{2 cables} de 1,5 mm) introduciendo el terminal receptor, la carcasa derribada en un orificio cerca de la línea, luego incorporando la alarma externa y mostrando la pared de la carcasa y la fijación interna, el terminal a los terminales correspondientes de la placa de circuito en la cubierta frontal. Instale el panel en la carcasa y fijelo con los tornillos de rosca suministrados.

(2) Si AID10 se instala abriendo la puerta del gabinete, el diagrama de instalación es el siguiente:

- 5.2.3 Modo de instalación de AID150
 - (1) Si elige empotrar la pared para la instalación, el diagrama de instalación es el siguiente:

(2) Si el instrumento de visualización y alarma externo AID150 se instala abriendo la puerta del gabinete, el diagrama de instalación es el siguiente :

5.3 Método de cableado

5.3.1 Modo de cableado del transformador de aislamiento médico serie AITR

Los terminales de entrada en los bloques de terminales del transformador están etiquetados con " P M", en los cuales dos terminales 0 y 230 están conectados a la entrada de CA monofásica de 220 V. Los terminales de salida están etiquetados con "SEC", en el que el voltaje de salida de dos terminales 0 y 230 es de 220 V CA y está conectado a una carga de campo externa. El borne S se conecta in situ a la barra colectora PE (o al cable equipotencial del terminal). Dos terminales ST son interfaces de sensores de temperatura, que están conectados respectivamente a los terminales 17 y 18 del instrumento de monitoreo de aislamiento AIM-M10.

Nota: El cableado de los terminales de entrada y salida del transformador de aislamiento debe seleccionar cables de cobre que coincidan con el diámetro de la línea según la corriente nominal de entrada y salida del transformador de aislamiento (consulte las tablas en la sección 5.4). El cableado del terminal S puede seleccionar un cable amarillo-verde de 2 × 4 mm²·El cableado de dos terminales ST puede seleccionar ² pares trenzados blindados de 2 × 1,5 mm, y el cableado no debe ser demasiado largo.

5.3.2 Modo de cableado de AIM-M10

Terminales de la fila inferior: FE, KE (1,2) están conectados al bloque de terminales de conexión a

tierra equipotencial de campo como conexión a tierra funcional del instrumento. A, B (3,4) son terminales de comunicación conectados con una alarma externa y un instrumento de visualización. +24 V, 0 V (5,6) son salidas de alimentación de CC para suministrar energía a la alarma y al instrumento de visualización. J (7,8) son la salida del relé de alarma de sobretemperatura (utilizado para controlar el ventilador de refrigeración).

Conexión a tierra Comunicación Relé de salida de 24 V producción

Terminal superior: L1, L2 (11, 12) están conectados con el sistema informático monitoreado. I0, I1 (15, 16) son entradas de señal del transformador de corriente AKH-0.66P26. T0, T1 (17, 18) son entradas de señal del sensor de temperatura.

Sistema de TI temperatura actual

Nota:

(1) Los cableados que conectan los terminales 11 y 12 del monitor de aislamiento pueden seleccionar cables de cobre de 2 × 1,5 mm ², y los terminales FE y KE correspondientes a 1 y 2 pueden seleccionar cables de color amarillo-verde de 2 × 4 mm ^{2 (cables de tierra}). La salida de relé son los nodos secos, que necesitan suministro de energía adicional durante el control de la carga externa. Por ejemplo, J1 controla el ventilador de refrigeración de 220 V CA, entonces se necesita la fuente de alimentación de 220 V CA y el tipo de línea de cableado debe determinarse de acuerdo con la corriente de carga.

(2) Se puede seleccionar un cable de par trenzado blindado de 2 × 1,5 mm para la línea de señal del transformador de corriente correspondiente a los terminales 15 y 16, la línea de señal de temperatura correspondiente a los terminales 17 y 18, la línea de comunicación RS485 correspondiente a los terminales 3 y 4. El puerto ^{COM} Para la comunicación no necesita cableado.

5.2.3 Modo de cableado del instrumento de visualización y alarma centralizado AID10/150

Los terminales de la fuente de alimentación corresponden al polo positivo y tierra del módulo de alimentación de 24V CC respectivamente. A y B están conectados con A y B en el terminal inferior de AIM-M10.

El diagrama de cableado se muestra en la siguiente figura.

La fuente de alimentación de 24 V se puede conectar mediante varios cables de cobre de 2 x 1,5 mm 2 , y el terminal de comunicación RS485 se puede conectar mediante un par trenzado blindado de 2 x 1,5 mm 2 .

5.4 Diagrama de cableado típico

Más información:

(1) El diámetro de la línea de conexión de entrada y salida del transformador de aislamiento debe coincidir con la corriente nominal del transformador de aislamiento, o puede seleccionarse de acuerdo con la siguiente tabla:

Tipo de transformador de aislamiento	Línea seleccionada diámetro
AITR3150	3×4mm ²
AITR5000/AITR6300	3×6mm ²
AITR8000/AITR10000	3×10mm ²

(2) Los terminales 11 y 12 del monitor de aislamiento AIM-M10 deben conectarse con 220 V CA del sistema de TI, que se pueden conectar directamente a los terminales de salida de 0 y 230 V en el lado secundario del transformador de aislamiento según el diagrama, y conectarse con 6 A. Protección por fusible en serie.

(3) El control de salida de relé de los terminales 7 y 8 del monitor de aislamiento AIM-M10 es un nodo seco, que necesita una fuente de alimentación de ventilador adicional cuando se utiliza para el control del ventilador. Cuando se instalan varios transformadores de forma centralizada en un gabinete de alimentación de aislamiento, se deben conectar varios ventiladores en modo paralelo controlado por varios monitores de aislamiento, es decir, cada monitor de aislamiento puede iniciar o detener todos los ventiladores.

(4) AKH-0.66P26 solo necesita pasar a través de uno de los dos cables L1, L2 del terminal de salida del lado secundario del transformador de aislamiento, pero no puede pasar a través de los dos cables simultáneamente. La salida está conectada con el cable 2×1,5 mm^{2 a los terminales 15, 16 del AIM-M10, lo que no está permitido para conexión a tierra.}

(5) Para monitorear de manera confiable el aislamiento de puesta a tierra del sistema de energía de aislamiento, los terminales 11 y 12 del monitor de aislamiento AIM-M10 deben estar conectados de manera confiable al sistema IT (que se puede conectar en paralelo al terminal de salida del transformador de aislamiento).) con cables de cobre multinúcleo de $2 \times 1,5$ mm², y los terminales 1, 2 deben conectarse respectivamente a los terminales equipotenciales del sitio (o a los terminales de conexión a tierra en el gabinete de alimentación de aislamiento) con dos cables de conexión a tierra amarillo-verde independientes de 4 mm 2 ·

(6) Cuando el instrumento de visualización y alarma centralizado AID150 monitorea múltiples conjuntos de AIM-M10 al mismo tiempo, la línea de comunicación debe conectarse manualmente (es decir, después de que la línea de comunicación del medidor anterior esté conectada al terminal de comunicación de este medidor, se saca del terminal de este medidor y se conecta al terminal de comunicación de la siguiente tabla). Se conectará una resistencia coincidente entre los dos terminales de comunicación al principio y al final del bus RS485, y la resistencia recomendada y adjunta con los productos. La resistencia es de 120 Ω . Los terminales 5, 6 del AIM-M10 corresponden a + 24 V y G respectivamente. Se recomienda seleccionar un cable de 0,5 mm² para suministrar energía al instrumento de alarma y visualización.

5.5 Consideraciones

(1) El monitoreo del aislamiento del sistema de TI médico y la localización de fallas de siete productos deben instalarse centralmente en el gabinete de energía de aislamiento, excepto para la serie AID. Si el espacio de campo es demasiado limitado para aplicar el gabinete de alimentación de aislamiento, el transformador de aislamiento se puede instalar por separado, pero no debe estar demasiado lejos del monitor de aislamiento y de la carga de campo.

(2) La instalación del cableado debe seguir estrictamente los diagramas de cableado, que preferiblemente deben usar la conexión de presión con los accesorios tipo aguja, y luego insertarlos en el terminal correspondiente del instrumento y apretar los tornillos para evitar condiciones de trabajo anormales del instrumento. causado por una conexión floja.

14__

(3) El cable de tierra del instrumento y el transformador deben estar conectados de manera confiable con los terminales equipotenciales en el campo. Al aplicar el gabinete de alimentación de aislamiento, se debe conectar a los terminales de conexión a tierra en el gabinete de fuente de alimentación de aislamiento y luego a los terminales equipotenciales en el campo.

(4) La entrada de corriente del instrumento de monitoreo de aislamiento médico AIM-M10 debe utilizar un transformador de corriente tipo AKH-0.66P26 correspondiente. Se recomienda utilizar una conexión de presión con penetradores tipo U durante la operación de cableado y luego conectar al terminal CT. No utilice directamente la conexión del cabezal desnudo, por consideraciones de conexión confiable y fácil desmontaje. Antes de retirar el cableado, los circuitos primarios del CT deben cortarse o los circuitos secundarios deben cortocircuitarse.

(5) Recordatorio especial:

Cualquier transformador de aislamiento tendrá una corriente de impacto cuando arranque, y una corriente de impacto demasiado grande puede causar que el disyuntor en el lado primario del transformador sea difícil de desconectar o apagar. Por lo tanto, para los sistemas de TI médicos compuestos por transformadores de aislamiento médico y productos de monitoreo de aislamiento, al seleccionar el disyuntor de entrada del transformador de aislamiento, se recomienda elegir disyuntores solo con protección contra cortocircuitos pero sin protección contra sobrecarga de acuerdo con los requisitos de GB. Si elige el disyuntor con protección contra sobrecarga, el disyuntor debe cumplir con las curvas de disparo C y D de GB14048.2-2008, y la corriente nominal del disyuntor debe determinarse de acuerdo con la capacidad del transformador de aislamiento de la siguiente manera: 10kVA-63A, 8kVA-50A, 6,3kVA-40A, 5kVA-40A, 3,15kVA-20A. Si la selección del disyuntor no cumple con los requisitos anteriores, la empresa no será responsable de ninguna negligencia médica causada por la dificultad de cierre del disyuntor o la desconexión del disyuntor durante la operación.

6 Programación y aplicación

6.1 Descripción del panel

(1) Panel de monitor aislado AIM-M10

(2) AID10 Panel de visualización y alarma externa

(3) AID150 Panel de visualización y alarma externa

6.2 Instrucciones del indicador LED

6.2.1 AIM-M10

Indicador	Instrucciones	
Fn	Cuando el funcionamiento del instrumento es normal, la luz indicadora parpadea,	
LII	con una frecuencia de parpadeo de aproximadamente una vez por segundo.	
Aislamiento	Cuando la resistencia de aislamiento excede el valor de alarma, o cuando el	

	LL/FK está desconectado, la luz indicadora parpadea para dar la alarma.	
Sabraaaraa	Cuando la corriente de carga excede la corriente de carga total del transformador,	
Sobrecarga	la luz indicadora parpadea para dar la alarma.	
	Cuando la temperatura del transformador de prueba excede el valor de alarma, o	
Demasiado calor.	cuando el cableado del sensor de temperatura está desconectado, la luz	
	indicadora parpadea para dar la alarma.	

6.2.2 AID10

Estado del indicador	Instrucciones	
En	Cuando el dispositivo está en funcionamiento normal, el indicador parpadea y la	
Ell	frecuencia de parpadeo es aproximadamente una vez por segundo.	
Aislamiento	Cuando la resistencia de aislamiento excede el valor de alarma, la luz indicadora	
	parpadea para dar la alarma.	
Sobrecarga	Cuando la corriente de carga excede la corriente de carga total del transformador,	
	la luz indicadora parpadea para dar la alarma.	
Sobretemperatura .	Cuando la temperatura del transformador de prueba excede el valor de alarma, la	
	luz indicadora parpadea para dar la alarma.	

6.2.3 AID150

Estado del indicador	Instrucciones
En	Cuando el dispositivo está en funcionamiento normal, el indicador parpadea y la
En	frecuencia de parpadeo es aproximadamente una vez por segundo.
Comunicacionas	Indica el estado de comunicación del dispositivo, cuando hay comunicación de
Comunicaciones	datos, la luz indicadora parpadea.
Falla	Cuando el monitor de la serie AIM detecta una falla de desconexión, el indicador
гапа	parpadea en alarma
Alarma	Cuando el monitor de la serie AIM-M excede el umbral de alarma, el indicador
	parpadea

6.3 Descripciones de las funciones de los botones

6.3.1 AIM-M10

AIM-M10 tiene cuatro botones en total, a saber, el botón compartido " Configuración e Ingreso ", el

botón "▲ "Arriba, "▼ " el botón Abajo y " Prueba " . botón.

Botones	Función del botón
Botón de	En modo sin programación, presione este botón para ingresar al modo de
configuración e	programación;
ingreso compartido	En modo de programación, se utiliza como botón Enter.
A Dotón amila	En modo sin programación, se utiliza para ver los registros de fallas.
 Boton annoa, Detén abaia 	En modo programación, se utiliza para aumentar o disminuir los valores, o para
• Boton abajo	cambiar el estado de la acción de protección.
Botón de prueba.	En estado de funcionamiento, se utiliza para iniciar la función de autoprueba del

6.3.2 AID10

AID10 tiene dos botones en total, a saber, el botón " Silenciar " y el botón " Prueba " .

Funciones

Botón de silencio	Cuando haya alarma, presione este botón para eliminar el sonido de la alarma.
Botón de prueba	Se utiliza para iniciar la función de autoprueba del instrumento.

6.3.3 AID150

El instrumento centralizado de alarma y visualización tiene cinco botones en total, a saber, el botón " Mute ",

" Menú e Intro " , " ▲ " Botón arriba, botón " ▼ " abajo y " Prueba " botón.

Llave	Funciones
Botón de silencio	Cuando haya alarma, presione este botón para eliminar el sonido de la alarma.
▲ Botón arriba,▼ Botón abajo	En modo programación, se utiliza para aumentar o disminuir el valor.
Botón de prueba	En modo sin programación, se utiliza para iniciar la función de autoprueba del
Menú e ingresar al botón compartido	En modo sin programación, presione este botón para ingresar al modo de programación; En modo de programación, se utiliza como botón Enter

6.4 Descripciones de funcionamiento de los botones

6.4.1 Monitor de aislamiento AIM-M10 en modo no programación

(1) Ingrese al modo de operación. El modo de inicio predeterminado es el modo de operación. La interfaz principal muestra el valor de temperatura, el valor de resistencia de aislamiento, la tasa de carga y la hora actual del sistema.

(2) Ver el registro de alarma. En la interfaz principal, presione "▲ " o "▼ " para ingresar a la interfaz de "consulta de registro de fallas". Presione el botón "enter" para confirmar y luego podrá pasar la página a través de "▼ " o "▲ " para consultar la condición de cada registro de falla por turno. El primer registro es el último registro y el décimo registro es el registro más antiguo.

(3) Autocomprobación del instrumento. Presione la tecla "Prueba", el monitor iniciará el programa de autoprueba para simular fallas de sobrecarga, fallas de aislamiento y fallas de sobretemperatura. Para detectar y juzgar si la falla principal es normal o no. Si el monitor puede detectar los tres tipos de fallas anteriores, indica que el funcionamiento del instrumento es normal.

6.4.2 Monitor de aislamiento AIM-M10 en modo programación

(1) Ingrese al modo de programación

En funcionamiento normal, presione Enter para ingresar a la página de ingreso de contraseña del modo de programación. Aumente el número en "▲" y disminúyalo en "▼". Después de ingresar la contraseña correcta, presione "↓" para ingresar al modo de programación.

(2) En el modo de programación, los parámetros del instrumento se configuran

Después de ingresar al modo de programación, presione "▲" o "▼" para ver la interfaz de cada parámetro.

En el modo de programación, presione el botón "↓", el parámetro parpadeará y el parámetro se puede modificar mediante "▲" y "▼". Cuando hay varios parámetros en la interfaz, como la interfaz de configuración del valor de alarma y la interfaz de configuración de hora, cuando el parámetro parpadea, "▲ " se utiliza para seleccionar el parámetro y "▼" se utiliza para modificar el valor del parámetro. Presione "↓" nuevamente para salir del modo de modificación de parámetros y navegar por el menú.

En el modo de programación, ingrese a la página "guardar parámetro" a través de la tecla Prueba, seleccione "sí" y "no" con las teclas Arriba y Abajo, y el parpadeo indica la selección. Presione el ", "Tecla para guardar o no los parámetros, salir del modo de programación y entrar en el modo de operación.

6.4.3 Operación de la tecla de visualización y alarma AID10

(1) Después de conectar AID10 y AIM-M10 a través de comunicación RS485, la luz de encendido parpadea, indicando que la comunicación es normal. Si la lámpara de funcionamiento está normalmente encendida, significa que la comunicación es anormal.

(2) Cuando AID10 detecta la marca de falla emitida por AIM-M10, la luz indicadora correspondiente parpadea y suena el timbre. Presione la tecla Silencio para apagar el timbre.

(3) Cuando el sistema esté funcionando normalmente, presione la tecla Prueba para iniciar la autoprueba del monitor de aislamiento AIM-M10.

6.4.4 Operación de la tecla de visualización y alarma del AID150

(1) Descripción de la interfaz operativa

Después de encender el sistema, si no hay ninguna alarma de falla, el AID150 muestra la interfaz de operación normal como se muestra en la siguiente figura. Los cuadros negros en la figura indican que el número de serie de la dirección correspondiente está conectado a la comunicación del instrumento, y los cuadros negros indican que no hay conexión del instrumento o que la comunicación no está conectada. Cuando el monitor de aislamiento o el monitor de corriente residual detecta la falla, AID150 muestra la interfaz de alarma correspondiente y envía la alarma de luz y sonido correspondiente.

	System fault(01/02)	System fault(02/02)
System normal	Loc.:ICU Bed:04	Loc.:OR Room:06
	Fault type: Insu	L1:OK L2:OK
2015-07-02 12:30:45	BRK OL OT	L3:OK L4:ORC

Indicación de falla normal del sistema (AIM-M10) indicación de falla (AIM-R100)

(2) Operaciones y descripciones de la interfaz de visualización de registros de fallas

(3) Operación y explicación de la interfaz de programación

El método de operación y el proceso se muestran en el siguiente diagrama de flujo.

Nota:

Cuando se utiliza AID150, primero se debe configurar el número total de monitores de aislamiento y monitores de corriente residual conectados al bus RS485, y el número total no debe exceder los 16 conjuntos. Este parámetro está en [configuración de comunicación] en el menú. La dirección esclava de cada monitor de aislamiento y monitor de corriente residual estará numerada del 1 al 16 en la medida de lo posible. Cuando el número total de monitores de aislamiento y monitores de corriente residual exceda los 16 conjuntos, se aumentará el número de AID150 y la conexión en red se realizará por separado.

7 Protocolo de comunicación

7.1 Protocolo de comunicación Modbus-RTU

La interfaz RS485 del medidor adopta el protocolo de comunicación Modbus-RTU, que define la dirección, el código de función, los datos y el código de verificación en detalle. Es el contenido necesario para completar el intercambio de datos entre el host y la máquina esclava.

7.2 Introducción al código de función

7.2.1 Código de función 03H o 04H: Leer los registros

Esta función permite al usuario adquirir los datos recopilados y registrados por el equipo y los parámetros del sistema. La cantidad de datos solicitados por los hosts no tiene límite, pero no puede exceder el rango de direcciones definido.

El siguiente ejemplo muestra cómo leer un valor de resistencia de aislamiento medido desde la computadora esclava No.01, con la dirección del valor 0008H.

La computa	Enviar	
enví	mensaje	
código de d	01H	
Código de	03H	
Dirección de	byte alto	00H
inicio	byte bajo	08H
Número de	byte alto	00H
registros	byte bajo	01H
código de verificación	byte bajo	05H
CRC	byte alto	C8H

La computado	mensaje de			
regre	respuesta			
código de d	01H			
Código de	03H			
byte	02H			
Datos de	Datos de byte alto			
registro	registro byte bajo			
CDN	CDN byte bajo			
Código de verificación	byte alto	78H		

7.2.2 Código de función 10H: Escribir los registros

El código de función 10H permite al usuario cambiar el contenido de múltiples registros, que pueden escribir la hora y la fecha en este medidor. El host puede escribir hasta 16 (32 bytes) de datos a la vez. El siguiente ejemplo muestra una dirección preestablecida de 01 con una fecha y hora de instalación de 12:00, viernes 1 de diciembre de 2009.

La computadora host	Enviar
envía	mensaje
código de dirección	01H

La computadora esclava	mensaje de
regresa	respuesta
código de dirección	01H

Código de	10H	
Dirección de	byte alto	00H
inicio	byte bajo	04H
Número de	byte alto	00H
registros	byte bajo	03H
Número de	registros	06H
datos 0004H	byte alto	09H
	byte bajo	0CH
datos 0005H	byte alto	01H
	byte bajo	05H
datos 0006H	byte alto	0CH
	byte bajo	00H
código de	byte bajo	Un 3H
verificación CRC	byte alto	30H

Código de	10H	
Dirección de	byte alto	00H
inicio	byte bajo	04H
Número de	byte alto	00H
registros	byte bajo	03H
código de	byte bajo	C1H
verificación CRC	byte alto	С9Н

7.3 AIM-M10 tabla de direcciones de parámetros

			Leer -		Tipo
No.	DIRECCIÓN	Parámetro	Escribi	Rango de valores	de
			r		datos
1	0000H	Protegiendo	R/E	0001~9999 (predeterminado 0001)	palabr
1		contraseña			а
	0001H alto	Dirección RS4851	R/E	1~247 (predeterminado 1)	
2	0001H bajo	RS485 baudios1	R/E	1~3 : 4800, 9600 , 19200 (unidad bps)	
				(predeterminado 2)	u
2	0002H alto	reserva _			palabr
5	0002H bajo	reserva _			а
	0003H alto	reserva _			palabr
4	0003H bajo	reserva _			a
5	0004H alto	Año	R/E	1~99	palabr
5	0004H bajo	Mes	R/E	1~12	a
6	0005H alto	Día	R/E	1~31	palabr
	0005H bajo	Semana	R/E	1~7	a
7	0006H alto	Hora	R/E	0~23	palabr
	0006H bajo	Minuto	R/E	0~59	а

0	0007H alto	Segundo		R/E	0~59	palabr
8	0007H bajo	Reservar				a
9	0008H	Resistencia aislamiento	de	R/E	10 ~ 999 (la unidad es k Ω)	palabr a
10	0009Н	Corriente de	e carga	R/E	0 ~ 500 (la unidad es 0,1 A)	palabr a
11	000AH	Temperatur transformad	a del lor	R/E	-50~200 (La unidad es °C)	palabr a
	000BH alto	Reservar				
12	000BH bajo	Tipo de fall	a	R	 Bit0: 0 normal; 1 Fallo de resistencia de aislamiento Bit1: 0 normal; 1 fallo de sobrecarga Bit2: 0 normal; 1 Fallo de sobrecalentamiento del transformador Bit3: Reserva Bit4: 0 normal; 1 Fallo de desconexión PE o KE Bit5: 0 normal; 1 Desconexión del sensor de temperatura Bit6: Reserva Bit7: Reserva 	palabr a
13~16	000CH~000FH	Reservar				
17	0010H	Valor de aju resistencia o aislamiento	iste de la le	R/E	10~999 (Unidad kΩ) (predeterminado 50)	palabr a
18	0011H	Cargar el va establecido	llor actual	R/E	14, 18, 22, 28, 35, 45 (Unidad A) (por defecto 35)	palabr a
19	0012H	Valor de aju temperatura transformac	iste de del lor	R/E	0~200 (Unidad °C) (predeterminado 70)	palabr a
20~24	0013H~0017H	Reservar				
25	0018H alto	Evento	Reservar			palabr

	0018H bajo	registro	STA1		Tipo SOE1: 0~6	a
		1			0: Sin registro de fallo 1: fallo de aislamiento	
				R	2: fallo de sobrecarga 3: Fallo de sobretemperatura	
					4: Desconexión Ll 5: desconexión PK	
					6: desconexión del TC	
26	0019H alto		Año 1	R	SOE1 tiempo - año	palabr
20	0019H bajo		polilla1	R	SOE1 tiempo - mes	a
27	001AH alto		Día 1	R	SOE1 hora - día	palabr
21	001AH bajo		Horal	R	SOE1 tiempo - hora	a
28	001BH alto		Minuto1	R	SOE1 tiempo - minuto	palabr
20	001BH bajo		Segundo1	R	Tiempo SOE1 - segundo	a
29~64	001CH~003FH	Almacene l	os otros 9 re	gistros	de eventos en el mismo formato que el primero.	

8 aplicaciones típicas

Aplicación de un conjunto de cuatro piezas de productos de monitoreo de aislamiento de sistemas médicos de TI en quirófano .

Nota: La barra de conexión a tierra en el gabinete de suministro de energía aislado debe conectarse de manera confiable con los terminales equipotenciales en el campo.

9 Instrucciones de encendido y depuración

9.1 Verificación del cableado

Para cada conjunto de sistema de TI, se debe realizar una verificación del cableado antes de encenderlo, principalmente verificando si hay una conexión incorrecta, perdida o en cortocircuito. El examen se puede realizar secuencialmente en el siguiente orden según los diagramas de cableado que se muestran en la sección 5.4 de este manual:

(1) Verifique si cada conjunto de cuatro piezas constituye un sistema de distribución de TI independiente y asegúrese de que las señales de corriente, resistencia y temperatura monitoreadas por cada monitor de aislamiento estén conectadas al mismo transformador de aislamiento y su sistema de TI.

(2) Verifique la salida de alimentación de CC del AIM-M10. Si los 5 y 6 (+ 24 V, G) del extremo de salida de 24 V están conectados de manera confiable respectivamente con los terminales de 24 V y G del dispositivo de visualización externo de la serie AID, y si los polos positivo y negativo son correctos.

(3) Verifique si los terminales 15 (I0) y 16 (I1) del AIM-M10 en cada sistema están conectados de manera confiable a los terminales del transformador AKH-0.66P26 enchufado al lado secundario del transformador de aislamiento correspondiente, y no están conectado a tierra. El transformador solo pasa por una de las dos líneas de los terminales de salida del transformador de aislamiento.

(4) Verifique si los terminales 17 (T0) y 18 (T1) del AIM-M10 en cada sistema están conectados con los dos terminales ST del transformador de aislamiento y conectados de manera confiable.

(5) Verifique si los terminales 11 (L1) y 12 (L2) de AIM-M10 en cada conjunto de sistemas están conectados de manera confiable con los dos cables del sistema IT (es decir, el extremo de salida del lado secundario del transformador de aislamiento).

(6) Verifique si los terminales 1 (FE) y 2 (KE) del AIM-M10 en cada sistema están conectados al bloque de terminales equipotencial de campo con cables, y si el terminal S del transformador de aislamiento también está conectado de manera confiable con el bloque equipotencial. bloque de terminales.

(7) Verifique si los terminales 3 (A) y 4 (B) de la comunicación RS485 del instrumento AIM-M10 en cada sistema están conectados con los terminales a y B del instrumento de visualización de alarma externo de la serie AID de manera manual, y lo positivo y lo negativo son correctos.

(8) Si cada transformador de aislamiento tiene un ventilador de enfriamiento, verifique si el control de energía del ventilador de enfriamiento está conectado a los terminales 7 y 8 de AIM-M10 en el sistema.

9.2 Fallos comunes y eliminaciones

Asegúrese de que el cableado sea correcto y encienda el sistema. Luego verifique si cada medidor es anormal y si hay una alarma de falla en AIM-M10. Para problemas comunes, se pueden determinar las

26__

Nombre	Fenómeno de falla	Posibles causas y solución de problemas
del equipo		r obioles causas y solucion de problemas
	Pantalla LCD: desconexión FK e indicador de aislamiento.	Los terminales 1 y 2 del AIM-M10 no están conectados de manera confiable a los terminales equipotenciales. Verifique los cableados y asegúrese de que estén conectados de manera confiable.
	Pantalla LCD: fallo de	Los terminales 17 y 18 del AIM-M10 no están conectados de
	desconexión del TC e	manera confiable a los dos terminales ST del transformador de
AINI-MIU moniton do	indicador de	aislamiento. Verifique los cableados y asegúrese de que estén
	sobrecalentamiento.	conectados de manera confiable.
aisiaimento	Pantalla LCD: fallo de	Al menos una de las dos líneas del sistema IT en el lado
	aislamiento e indicador de	secundario del transformador de aislamiento tiene una falla a
	aislamiento.	tierra; después de eliminarla se puede restablecer la normalidad.
	El instrumento no está	La fuente de alimentación de 220 V del AIM-M10 no está bien
	encendido	conectada. Verifique el cableado de los terminales 11 y 12 y
	chechalao.	asegúrese de que estén conectados de manera confiable.
	El instrumento no está	La fuente de alimentación de 24 V no está bien conectada.
serie de	encendido	Verifique el cableado de los terminales de 24 V y G y vuelva a
ayuda	chechalao.	cablearlo.
Instrument		① Si la dirección esclava de AIM-M10 no está configurada en el
0		valor predeterminado 1, o el baudio esclavo no está configurado
centralizad		en el valor predeterminado 9600, es necesario configurarlo como
o de	El indicador de comunicación	el valor predeterminado.
alarma y	no parpadea	② Si la línea de comunicación con AIM-M10 en el sistema no
visualizaci		está bien conectada, verifique la línea de comunicación y
ón.		confirme si la resistencia coincidente está conectada
		correctamente.

causas y eliminar las fallas según el fenómeno de cada instrumento y los tipos de falla:

Nota: Si ocurren las fallas anteriores, interrumpa la energía para solucionar el problema y ajuste los cables hasta que todo sea normal.

9.3 Configuración y depuración

(1) Al ingresar a la configuración del menú, los productos médicos de TI de ACREL deben ingresar la contraseña. La contraseña inicial de todos los productos médicos de TI es 0001.

(2) Después de encender el sistema, configure el valor de alarma de corriente de carga del AIM-M10 de acuerdo con la capacidad del transformador de aislamiento. Las relaciones correspondientes entre la corriente de alarma y la capacidad del transformador de aislamiento son: 45A---10kVA, 35A---8kVA, 28A---6,3kVA, 14A---3,15kVA. Después de la configuración, siga el proceso paso a paso para salir y guardar los parámetros de configuración. El valor de corriente de alarma predeterminado del instrumento es 35 A; si el transformador correspondiente es de 8 kVA, entonces no es necesario configurar este parámetro 1.

(3) Configuración de parámetros de comunicación. Para realizar la función de monitoreo

centralizado de múltiples conjuntos de monitores de aislamiento a través de la alarma centralizada y la pantalla AID150, es necesario configurar las direcciones esclavas de cada AIM-M10 por turno (la dirección maestra se usa para comunicarse con la computadora superior, si no hay una computadora superior, no es necesario configurarla), y luego la comunicación entre los instrumentos debe conectarse mano a mano. Después de la configuración, el cabezal y el final del bus de comunicación se conectan con una resistencia coincidente de 120 Ω (se debe agregar la resistencia; de lo contrario, es posible que no sea posible la comunicación). El AID150 no necesita configurar la dirección de comunicación RS485. Cuando se utiliza un instrumento de visualización y alarma externo tipo AID10 para monitorear un conjunto de monitores de aislamiento AIM-M10, la dirección esclava del monitor de aislamiento debe ser 1 y la velocidad en baudios del esclavo debe ser 9600; de lo contrario, no se puede comunicar.

(4) Cuando se utiliza AID150, primero se debe configurar el número total de monitores de aislamiento o monitores de corriente residual conectados al bus RS485, y el número total no debe exceder los 16 conjuntos. En AID150, la configuración de este parámetro se encuentra en el submenú [Comm set] del menú. La dirección esclava de cada monitor de aislamiento o monitor de corriente residual estará numerada del 1 al 16 en la medida de lo posible. Cuando el número total supere los 16 conjuntos, se aumentará el número de AID150 y la conexión en red se realizará por separado.

Sede: Acrel Co., LTD. Dirección: No.253 Yulv Road Distrito Jiading, Shanghai, China TEL.: 0086-21-69158338 0086-21-69156052 0086-21-59156392 0086-21-69156971 Fax: 0086-21-69158303 Sitio web: www.acrel-electric.com correo: ACREL008@vip.163.com Código postal: 201801

Fabricante: Jiangsu Acrel Electrical Manufacturing Co., LTD. Dirección: No.5 Dongmeng Road, parque industrial Dongmeng, calle Nanzha, ciudad de Jiangyin, provincia de Jiangsu, China TELÉFONO: 0086-510-86179966 Fax: 0086-510-86179975 Sitio web: www.jsarel.com Código postal: 214405 Correo electrónico: sales@email.acrel.cn